Pcm

RC Design / Статьи / Аппаратура Радиоуправления

PPM или PCM ?

Вступление

Когда мы пользуемся аппаратурой радиоуправления, нас всегда интересует надежность радиоуправления и его устойчивость к помехам. Наверное, все вы знаете, что аппаратура радиоуправления бывает PPM и PCM. PPM — с аналоговым принципом кодирования, PCM — с цифровым. PPM — дешевле, PCM — дороже.

Сколько себя помню, всегда интересовался, насколько PCM-аппаратура надежнее и стоит ли доплачивать дополнительных денег за PCM-приемник. Вразумительного ответа ни в магазинах, ни у знакомых получить не удалось. Все аргументы были либо из серии "кто громче крикнет", либо сводились к конкретным примерам из жизни, что тоже не устраивало. Поэтому пришлось самостоятельно искать информацию и разбираться.

Надо сказать, что сравнение PPM и PCM было довольно хорошо сделано на страничке http://www.aerodesign.de/peter/, поэтому тот материал и был взят за основу данной статьи. Многие излишние технические подробности были опущены, но желающие могут их посмотреть в оригинале.

Здесь приводятся достоинства и недостатки обеих систем. А дальше вы сами сможете решить, какой аппаратурой пользоваться в каждом конкретном случае.

Принцип PPM-кодирования

О PPM-кодировании не писал только ленивый. Стандарт очень старый, универсальный и распространенный. Поэтому, описание будет кратким.

В PPM-кодере каждый канал задается импульсом, длительностью от 700 до 2200 мкс. Границы могут немного варьироваться, в зависимости от конкретной модели аппаратуры. Среднему положению рулевой машинки соответствует импульс длительностью около 1500 мкс.

Все канальные импульсы объединяются в последовательность и передаются каждые 18-20 мс. Пауза между передачей служит для синхронизации.

Принцип PCM-кодирования

Здесь все несколько сложнее, чем с PPM. Единый стандарт на кодирование отсутствует. Каждая фирма придумывает свой механизм кодирования данных.

В PCM-аппаратуре, информация о каждом канале передается в виде числа. Точность, с которой задается значения сигнала, составляет от 8 до 10 разрядов. То есть, в зависимости от реализации PCM, можно будет задать 256, 512 или 1024 различных положения для ручки передатчика (ну или для рулевой машинки).

Данные со всех каналов объединяются в последовательность, к ним добавляется синхропакет, контрольная сумма, и все это подается на модулятор. В приемнике, после детектора, сигнал поступает на микроконтроллер, который по синхропакету определяет начало фрейма данных, декодирует их, проверяет контрольную сумму и в зависимости от результата решает, что делать дальше (выдать на рулевые машинки, проигнорировать, перейти в режим failsafe и т.д.).

Вторым нюансом PCM является то, что данные передаются несколько дольше, чем в PPM. Это легко подсчитать. Надо транслировать 8-10 каналов, по 8-10 бит на канал. Плюс контрольные суммы, служебная информация и синхропоследовательность. Итого, получается 100-160 бит. Ввиду того, что спектр излучения передатчика ограничен, длительность одного бита не может быть меньше 0.3 мс. Таким образом, на передачу полного фрейма данных (информации обо всех каналах на заданный момент времени) должно уйти 30-50 миллисекунд, против 20 у PPM. Некоторые производители аппаратуры используют различные хитрости, чтобы увеличить скорость передачи.

Пример — PCM 1024

Рассмотрим алгоритм PCM 1024, который используется в передатчиках Futaba. Он довольно интересен и обеспечивает относительно небольшую длительность фрейма данных.

Каждый фрейм состоит из синхроимпульса, данных о значении каналов, служебных данных и контрольной суммы. Служебные данные несут в себе информацию о работе в режиме failsafe. При помехе, когда контрольная сумма не совпадает, данные из всего фрейма будут утеряны. Общий цикл передачи данных занимает 28.5 мс.

Чтобы уменьшить размер фрейма, для каждого сигнала поочередно передается то абсолютное значение (все 10 бит), то разностное (в виде изменения, которое занимает меньше места). Обратите внимание, что в четных фреймах абсолютные значения передаются для каналов 1, 3, 5, 7, 9, а в нечетных фреймах — для каналов 2, 4, 6, 8. При такой схеме передачи, выпадение одного фрейма не может сильно влиять на точность данных, а скорость обновления наиболее динамичных каналов остается очень высокой. Всего 14.25 мс, что даже чуть меньше чем в PPM.

Общая ситуация со стандартами PCM и PPM

Как уже говорилось выше, каждый производитель аппаратуры стремится реализовать свой стандарт PCM. По крупному счету, здесь прослеживается желание заработать побольше денег, нежели стремление качественно улучшить надежность связи. Тем не менее, мы с вами, как пользователи, вряд ли можем кардинально поменять ситуацию. Поэтому давайте ознакомимся с тем, что происходит, для общего развития.

Z-PCM (512) от JR/Graupner. 8 аналоговых каналов, каждый канал может передавать 512 положений (разрядность — 9 бит). Данные передаются в 2 приема, по 4 канала в каждом пакете, защищенном контрольной суммой. Длительность передачи 1 пакета — 22 мс. Каждый пакет состоит из данных о канале 1 или 5, 2 или 6, 3 или 7, 4 или 8. Если какой-то канал остается неизменным, то передатчик автоматически заменяет его вторым каналом из пары. Таким образом, информация о наиболее динамичных каналах передается чаще. При единичной ошибке пропадают данные о 4-ех каналах.

S-PCM (1024) от JR/Graupner. Дальнейшее развитие Z-PCM. Точность — 10 бит. Размер 1 блока данных был уменьшен и длительность теперь составляет 10.5 мс. Полный цикл передачи данных обо всех каналах состоит из 4 блоков данных и длится 44 мс. При единичной ошибке пропадают данные о 2-ух каналах.

Simprop PCM (System 90). Используется прямой подход. Весь фрейм длится 55 мс, состоит из 6 блоков для аналоговых каналов (по 8 бит на канал) и 6 блоков для дискретных каналов (по 3 бита на канал). Каждый блок защищен своим битом четности. Не самый надежный вариант, но вполне приемлемы (с учетом того что вероятность двойных ошибок намного меньше чем вероятность одинарных).

Robbe Futaba PCM 1024. Одно из самых любопытных решений, имеющее наибольшую скорость передачи информации по сравнению конкурирующими алгоритмами. Детали реализации были описаны в предыдущей главе.

Multiplex IPD (Intelligent Pulse Decoding). Изначально, фирма Multiplex имела свой PCM-стандарт, но впоследствии от него отказалась и стала продвигать улучшенную версию PPM, которую назвали IPD. Суть заключается в использовании микроконтроллера для обработки принятого сигнала. Микроконтроллер анализирует поступающие данные и пытается свести влияние ошибок к минимуму, там где это возможно. Заодно реализуется функция failsafe.

Поскольку нас интересует лишь надежность передачи информации, здесь опущены все технические детали реализации, чтобы не забивать вам голову. В конце концов, вам ведь надо решить, какой выбрать приемник, а не делать такие приемники своими руками. Но особо любопытные могут посмотреть исходные тексты аудиодрайвера для RC-передатчика. Он позволяет подключить передатчик через линейный вход soundblaster-а и понимает протоколы PCM 1024 и S-PCM.

А нужен ли режим failsafe?

Failsafe — это такой режим, когда при отсутствии сигнала с передатчика, рулевые машинки устанавливаются в заранее заданное положение. Сам по себе такой режим может быть реализован по-разному. Чаще всего такая функция встроена в приемники, содержащие внутри микроконтроллер (PCM- и IPD-приемники). Но эта функция может быть встроена и в цифровые рулевые машинки.

Сложно сказать однозначно, что этот режим полезен, или наоборот, вреден. Как вы знаете, ситуации бывают самые разные. В одном случае failsafe сможет при помехе спасти вашу модель, а в другом — с легкостью ее угробит. И заранее тут сложно что-либо предугадать.

Действительно однозначно удачное применение, которое приходит на ум — это модели вертолетов. Ведь часто их запускают поблизости от людей, а ротор вертолета представляет огромную опасность для жизни. Вполне может случиться, что при сильной помехе вертолет полетит в сторону толпы. И уж конечно вопросы сохранности самой модели при этом отступят на второй план. Failsafe позволит сбросить газ вертолета до минимума и уменьшит вероятность человеческих жертв. Вертолет, скорее всего, просто не долетит до людей.

Применительно к самолетам, можно сделать общее заключение, что во многих случаях газ было бы неплохо сбросить до минимума. Обычно, есть большая разница между ситуацией, когда модель врезается в землю на холостом ходе и когда врезается на полном газе. Естественно, речь уже идет не о спасении модели, а о минимизации возможного ущерба.

Достоинства и недостатки различных подходов

Достоинства PPM:

  • Возможность совместной работы приемников и передатчиков различных производителей.
  • Простота реализации и дешевизна.
  • Помехи в эфире можно обнаружить на самой ранней стадии возникновения (рулевые машинки начинают подергиваться).

Недостатки PPM:

  • Ввиду простоты протокола, обнаруживать ошибки передачи довольно проблематично.

Достоинства PCM:

  • Точное позиционирование рулевых машинок, не зависящее от дальности и других факторов.
  • Сохранение положений сервомашинок в случае коротких помех. Это приводит к увеличению расстояния на котором рулевые машинки все еще управляются. Но надо помнить, что ценой является замедленная реакция (из-за выпадения искаженных фреймов данных), а также возможность перехода приемника в режим failsafe.
  • Возможность установить рулевые машинки в заданное положение при полном пропадании сигнала или при сильных помехах (режим failsafe).

Недостатки PCM:

  • PCM-приемники более дорогие, по сравнению с аналогичными PPM-приемниками.
  • Ввиду более широкого спектра PCM-сигнала, избирательность по соседнему каналу немного уступает избирательности аналогичных PPM-приемников. Категорически не рекомендуется летать над передатчиком, работающем на соседнем канале. Впрочем, к PPM-приемникам это тоже относится, хотя и в чуть меньшей степени. Естественно, в обоих случаях речь идет о сравнимых приемниках (например, похожих и качественных приемниках двойного преобразования).
  • Разные производители по-разному реализуют протоколы PCM. Вследствие этого приемники и передатчики разных производителей практически никогда не могут работать вместе в режиме PCM.
  • Проверка качества приема сильно затруднена, поскольку приемник маскирует помехи (сервомашинки не дергаются, а фиксируются на месте). О наличии помех можно узнать слишком поздно (когда они настолько большие, что приемник уже переходит в режим failsafe).

Заключение

Какие можно сделать выводы?

  • От крупных неприятностей с управлением, PCM все равно не спасает.
  • PCM помогает ликвидировать незначительные редкие помехи. Эти помехи не имеют серьезного влияния на безопасность полетов, но отсутствие незначительных и редких подергиваний сервомашинок позволяет управлять моделью более комфортно.
  • Если уровень помех не позволяет летать на PPM, то использовать PCM тоже нет смысла. Модель все равно может потерять управление в любой момент, причем, вследствие фильтрации помех в PCM, потеря управления будет очень внезапной.
  • Отдельно стоит упомянуть ситуации, когда источник помех предсказуем (вроде искрового зажигания). В официальных бумагах одного из разработчиков электронного зажигания CH Ignitions фирма не рекомендует использовать режим РСМ, поскольку он маскирует помехи от зажигания и не позволяет вовремя обнаружить неполадки. В этом случае на малых расстояниях помехи парируются пропусками испорченных пакетов, а на увеличенной дистанции будет потеря аппарата. Сложно сказать насчет регулярных полетов, но проверять и обкатывать модель с искровым зажиганием действительно лучше в режиме PPM.

Запомните, что нет смысла выбирать аппаратуру по принципу PPM/PCM. Гораздо большее значение имеет качество исполнения остального радиотракта (ВЧ-модуля передатчика и приемника). Просто если приемник PCM, то он как правило всегда двойного преобразования (за исключением моделей фирмы Graupner) и с хорошими характеристиками. В общем, если у вас хорошая аппаратура с PCM — пользуйтесь ею в этом режиме. Если просто FM, но приемник двойного преобразования — тоже пользуйтесь и не расстраивайтесь.

Эту статью не стоит рассматривать как исчерпывающее сравнение PPM и PCM, или как какой-то итог. Скорее, как серьезное начало конструктивного диалога, который можно продолжить на форуме.

Обсудить на форуме

Все алгоритмы PCM, существующие на сегодняшний день, используют для защиты информации только контрольную сумму. Никакой избыточности нет и в помине. Это значит, что в случае искажения можно будет определить, что данные повреждены, но восстановить ничего не получится.

Качество звука зависит от многих факторов, однако одним из основных считается технология записи аудиосигналов. В настоящий момент широко применяются два метода: цифровой и аналоговый. Каждый из них имеет свои особенности, преимущества и недостатки. Поэтому вопрос о том, какой звук лучше: аналоговый или цифровой, для многих остаётся открытым. Чтобы определиться с ответом, необходимо ознакомиться с информацией, рассмотренной в статье.

Аналоговый звук: преимущества и недостатки

Любые аудиосигналы (устная речь, музыка), воспринимаемые ухом человека, имеют аналоговую природу. Они распространяются в пространстве в виде волн. При аналоговой записи механические колебания преобразовывают в электрические, используя микрофон. Затем данные переносят на магнитную ленту или винил. Это специальные носители, предназначенные для хранения и дальнейшего воспроизведения аудиосигналов через магнитофон или проигрыватель.

К основным преимуществам аналогового звука относят хорошую глубину, сбалансированность басов и верхних нот. Среди недостатков специалисты выделяют:

  1. Быстрое старение носителей. Аудиоданные записывают на магнитные ленты, которые изнашиваются и растягиваются с каждым прослушиванием, а также на виниле, имеющим свойство царапаться, загрязняться и т. д.
  2. Низкую защищённость. В процессе записи к музыке могут примешиваться посторонние шумы, хрипы и многие другие помехи, ухудшающие качество аудиосигнала.
  3. Неудобство использования носителей. Записанную музыку и другие аудиоданные сложно тиражировать, хранить, воспроизводить и т. д.

Именно поэтому при записи сигналов стала применяться более совершенная технология.

Особенности цифрового звука

Подобный метод записи появился в 80-х годах прошлого столетия. Для преобразования аналоговых колебаний в цифровую форму применяется специальное устройство – АЦП. Его подключают к микрофону, чтобы кодировать частоты в форму единиц и нулей. Получаемые цифры записываются на носитель не сплошным потоком, а дискретно (по координатам). Однако в момент прослушивания музыки такие данные раскодируются устройством АЦП.

Для хранения и воспроизведения оцифрованного аудио применяется множество носителей, например, CD-Audio, DVD, DSD. Также источниками считаются файлы форматов WAVE, Ogg, MP3 и т.

д.

Ключевые преимущества

Аналоговая и цифровая записи звука обладают различными достоинствами и недостатками.

DSD или PCM, какой формат на самом деле лучше?

К основным преимуществам дискретных аудиосигналов можно отнести:

  1. Удобство использования. Дискретное аудио можно долго хранить на основных носителях и тиражировать без потери качества.
  2. Высокую степень защиты от помех. В момент записи специальные программы очищают звук от гранулярного шума, хрипов и т. д.
  3. Универсальность. Цифровое вещание можно транслировать на огромное количество каналов.

Однако дискретное аудио имеет и недостатки. Кодировка сигнала в цифровую форму приводит к частичному снижению качества и появлению гранулярного шума. С развитием технологий специалистам удалось минимизировать эти проблемы.

Аналоговый и цифровой звук дополняют друг друга. Обе технологии широко используются в звукозаписывающих студиях, на радиостанциях, телевидении и т. д. При домашнем прослушивании выбор конкретного варианта определяется только вкусовыми предпочтениями. 

Аудио-кодирование: секреты раскрыты

Настройка аудио для видеозахвата и трансляции.

Как люди, непосредственно связанные с AV сферой, мы постоянно говорим об аудио-кодировании и аудиокодеках, а что же это такое? Аудиокодек – это, по сути, устройство или алгоритм, способный кодировать и декодировать цифровой аудиосигнал.

На практике аудиоволны, которые передаются по воздуху, являются продолжительными аналоговыми сигналами. Сигналы преобразуются в цифровой формат устройством, которое называется аналого-цифровой преобразователь (АЦП), а устройство обратного преобразования – цифро-аналоговый преобразователь (ЦАП). Кодек находится между этими двумя функциями и именно он позволяет откорректировать некоторые важные параметры для успешного захвата, записи и трансляции звукового сигнала: алгоритм кодека, частота дискретизации, разрядность и скорость передачи данных.

Три наиболее популярных аудиокодека: Pulse-Code Modulation (PCM), MP3 и Advanced Audio Coding (AAC). Выбор кодека определяет степень сжатия и качество записи. PCM – кодек, который используется компьютерами, CD-дисками, цифровыми телефонами и иногда SACD-дисками. Источник сигнала для PCM сэмплируется через равные интервалы, и каждый сэмпл представляет собой амплитуду аналогового сигнала в цифровом значении. PCM – это наиболее простой вариант для оцифровки аналогового сигнала.

При наличии правильных параметров этот оцифрованный сигнал может быть полностью реконструирован обратно в аналоговый без каких-либо потерь. Но этот кодек, обеспечивающий практически полную идентичность оригинальному аудио, к сожалению, не очень экономичен, что выражается в очень больших объемах файлов, а такие файлы не подходят для потокового вещания. Мы рекомендуем использовать PCM для записи цифровых образов для ваших источников или когда вы занимаетесь постобработкой аудио.

К счастью, у нас всегда есть возможность выбрать другой кодек, который может сжимать цифровые данные (по сравнению с PCM) на основании некоторых полезных наблюдений о поведении звуковых волн. Но в этом случае приходится идти на компромисс: все альтернативные алгоритмы сопряжены с «потерями», так как невозможно полностью восстановить исходный сигнал, но, тем не менее, результат всё равно хорош настолько, что большинство пользователей не смогут уловить разницу.

MP3 – это формат аудио-кодирования с использованием как раз такого алгоритма сжатия цифровых данных, который позволяет сохранять аудиосигнал в меньшие по объему файлы. Кодек MP3 чаще всего используется пользователями для записи и хранения музыкальных файлов. Мы рекомендуем применять MP3 для трансляций аудио-контента, так как ему требуется меньшая пропускная способность сети.

AAC – это более новый алгоритм кодирования аудиосигнала, ставший «преемником» MP3. AAC стал стандартом для форматов MPEG-2 и MPEG-4. По сути это тоже кодек сжатия цифровых данных, но с меньшей, чем у MP3, потерей качества при кодировании с одинаковыми битрейтами. Мы рекомендуем использовать этот кодек для онлайн трансляций.

Частота дискретизации (кГц, kHz)

Частота дискретизации (или частота сэмплирования) — частота, с которой происходит оцифровка, хранение, обработка или конвертация сигнала из аналога в цифру. Дискретизация по времени означает, что сигнал представляется рядом своих отсчетов (сэмплов), взятых через равные промежутки времени.

Измеряется в герцах (Гц, Hz) или килогерцах (кГц, kHz,) 1 кГц равен 1000 Гц. Например, 44 100 сэмплов в секунду можно обозначить как 44 100 Гц или 44,1 кГц. Выбранная частота дискретизации будет определять максимальную частоту воспроизведения, и, как следует из теоремы Котельникова, для того, чтобы полностью восстановить исходный сигнал, частота дискретизации должна в два раза превышать наибольшую частоту в спектре сигнала.

Как известно, человеческое ухо способно улавливать частоты между 20 Гц и 20 кГц. Учитывая эти параметры и значения, показанные в таблице ниже, можно понять, почему именно частота 44,1 кГц была выбрана в качестве частоты дискретизации для CD и до сих пор считается очень хорошей частотой для записи.

Есть ряд причин для выбора более высокой частоты дискретизации, хотя может показаться, что воспроизводить звук вне диапазона человеческого слуха – пустая трата сил и времени. При этом среднестатистическому слушателю будет вполне достаточно 44,1 – 48 кГц для качественного решения большинства задач.

Разрядность

Наряду с частотой дискретизации есть такое понятие как разрядность или глубина звука. Разрядность – это количество бит цифровой информации для кодирования каждого сэмпла. Проще говоря, разрядность определяет «точность» измерения входного сигнала. Чем больше разрядность, тем меньше погрешность каждого отдельного преобразования величины электрического сигнала в число и обратно. С минимальной возможной разрядностью есть только два варианта измерения точности звука: 0 для полной тишины и 1 для звучания в полном объеме. Если разрядность равна 8 (16), то при измерении входного сигнала может быть получено 28= 256 (216= 65 536) различных значений.

Разрядность закреплена в кодеке PCM, но для кодеков, которые предполагают сжатие (например, MP3 и AAC) этот параметр рассчитывается при кодировании и может меняться от сэмпла к сэмплу.

Битрейт

Битрейт — это показатель количества информации, которым кодируется одна секунда звучания. Чем он выше, тем меньше искажений и тем ближе закодированная композиция к оригиналу. Для линейного PCM битрейт рассчитывается очень просто.

битрейт = частота дискретизации × разрядность × каналы

Для таких систем как Epiphan Pearl, которые кодируют линейный PCM 16-бит (разрядность 16), этот расчет может быть использован для определения, сколько дополнительных полос пропускания может потребоваться для PCM аудио. Например, для стерео (два канала) оцифровка сигнала производится с частотой 44,1 кГц на 16-бит, а битрейт при этом рассчитывается таким образом:

44,1 кГц × 16 бит × 2 = 1 411,2 кбит/с

Между тем алгоритмы сжатия аудиосигнала, такие как AAC и MP3, имеют меньшее количество бит для передачи сигнала (в этом и заключается их цель), поэтому они используют небольшие битрейты.

Обычно значения находятся в диапазоне от 96 кбит/с до 320 кбит/с. Для этих кодеков чем выше битрейт вы выбираете, тем больше аудио бит вы получаете на сэмпл, и тем выше будет качество звучания.

Частота дискретизации, разрядность и битрейты в реальной жизни.

Аудио CD-диски, одни из первых наиболее популярных изобретений для простых пользователей для хранения цифрового аудио, использовали частоту 44,1 кГц (20 Гц – 20 кГц, диапазон человеческого уха) и разрядность 16-бит. Данные значения были выбраны, чтобы при хорошем качестве звука иметь возможность сохранять как можно больше аудио на диске.

Когда к аудио добавилось видео и появились DVD, а позднее Blu-Ray диски, был создан новый стандарт. Записи для DVD и Blu-Rays обычно используют линейный формат PCM с частотой 48 кГц (стерео) или 96 кГц (звук 5.1 Surround) и разрядность 24. Эти значения были выбраны в качестве идеального варианта, чтобы сохранять аудио с синхронизацией с видео и при этом получать максимально возможное качество с использованием дополнительного доступного дискового пространства.

Наши рекомендации

CD, DVD и Blu-Ray диски преследовали одну цель – дать потребителю высококачественный механизм воспроизведения. Задачей всех разработок было предоставить высокое качество аудио и видео, не заботясь о величине файла (лишь бы он умещался на диск). Такое качество мог обеспечить линейный PCM.

Ликбез от What Hi-Fi: HD-аудио PCM • 24 бит/48 кГц • Без потери качества

Напротив, у мобильных средств информации и потокового медиа совсем другая цель – использовать максимально низкий битрейт, при этом достаточный для поддержания приемлемого для слушателя качества. Для этой задачи лучше всего подходят алгоритмы сжатия.

Теми же принципами вы можете руководствоваться для своих записей.

При записи аудио с видео…

В случае если запись будет использоваться для последующей обработки, выбирайте кодек PCM с частотой 48 кГц и максимальной разрядностью (16 или 24), чтобы обеспечить наилучшее качество аудио. Мы рекомендуем данные параметры для Epiphan Pearl.

При потоковой передаче аудио с видео…

При потоковой передаче или записи для последующей трансляции можно получить хорошее звучание аудио при меньшей полосе пропускания, используя кодеки AAC или MP3 с частотой 44,1 кГц и битрейт 128 кбит/с или выше. Такие параметры гарантируют, что звук будет достаточно хорош и не скажется на качестве трансляции.

.

После того как HD-исчисление видео стало де-факто бытовым форматом как записи, так и воспроизведения, пришло время окинуть взглядом передовую аудиофронта. Нет, наши айфоны еще не записывают интервью в 24/96, но на самом деле в индустрии сегодня предлагаются еще более продвинутые, чем даже 24/192, способы оцифровки звукового сигнала.

До недавних пор встретить звук большего, чем 16/44, разрешения можно было на дисках DVD, DVD-Audio, SACD и HD-DVD, Blu-ray (см. таблицу). Затем сюда добавилась онлайн-дистрибьюция HD-аудио. На сегодня половина форматов испустила дух, физическим носителям вообще предрекают погибель, но зато парадоксальным образом сохранился и ширится ассортимент SACD, причем даже стали выпускаться Blu-ray, предназначенные исключительно для аудио. Вы вообще понимаете, что происходит?

В последнее время среди поклонников аудио высокого разрешения наметился интерес к наследию Super Audio CD и всему, что с ним связано. Главным образом к его принципу DSD-преобразования, которое отличается от традиционного РСМ (импульсно-кодовой модуляции).

Эд Мейтнер, один из самых компетентных людей по части цифрового звука (Museatex, EMM Labs), в 90-х годах был привлечен Sony для разработки нового аудиофильского формата SACD.

В свое время Мейтнер немало поработал со звукозаписывающим оборудованием и отмечал ущербность, точнее, необратимость преобразования в РСМ. Дело в том, что на стадии оцифровки аналоговый сигнал побитово кодируется дельта-сигма модулятором с высоким уровнем дискретизации. Далее поток обрабатывается децимирующим фильтром с понижением частоты дискретизации и разбивается на 16- или 24-битовые «слова». Конечная частота дискретизации потока, точнее, ее половина (согласно теореме Найквиста — Котельникова) и определит рабочий диапазон сигнала, восстановленного уже обратно из цифры в аналог. То есть у 44,1 кГц компакт-диска получается потолок 22,05 кГц, у HD-потока с дискретизацией 96 кГц — это 48 кГц и так далее.

На стадии преобразования РСМ-сигнала в аналог в дельта-сигма ЦАПе приходится опять загонять его в модулятор и повышать частоту дискретизации, а только потом конвертировать в звуковой сигнал для усилителя. Трансформации выглядят не слишком опрятными, правда?

Мейтнер вместе с остальными разработчиками SACD-формата предпочел избавиться от лишних звеньев в этой цепи, исключив и децимирующий фильтр, и многобитовые «слова», грозящие джиттером, и буфер для них, и оверсемплинг в ЦАПе, предложив прямую дельта-сигма-передачу на сверхвысокой частоте 2,8224 МГц, что в 64 раза превышала частоту дискретизации компакт-диска. А пишущее DSD-оборудование так и вовсе предлагало удвоенную частоту 5,6448 МГц.

Super Audio CD — те, которые были изданы по всем канонам, т.е. с полным DSD-циклом с момента записи, заслужили самые лестные эпитеты и сравнения с аналоговым звучанием. То есть речь шла не только о расширенном частотном диапазоне, но и о впечатляющих переходных характеристиках.

Руководство по HD-звуку

В настоящее время широкое применение DSD-мастеринга сдерживается консерватизмом звукозаписывающих студий: люди есть люди. Многие привыкли к чему-то одному, а интерес к максимальному качеству мастер-фонограмм все-таки имеет локальный характер. Хотя некоторые маленькие аудиофильские лейблы потихоньку начали онлайн-торговлю файлами в DSD (расширение у них либо .DFF либо .DSF). Да и растет список AV-ресиверов и ЦАПов с поддержкой DSD-потока. Параллельно с этим появилась возможность передавать его по USB или FireWire, в связи с этим относительно недорогой студийный ЦАП Mytek Stereo192 DSD DAC (1700 долларов) вызвал переполох в узких кругах. А что же старый добрый РСМ?

Выясняется, что РСМ тоже кое-чем может помочь своему конкуренту. Как уже упоминалось, в студиях звукозаписи неохотно связываются с DSD-исходниками, в том числе и из-за определенных сложностей в его редактировании. Поэтому компания Digital Audio Denmark предложила PCM-формат нового поколения — DXD-рекординг с параметрами 32 бит/352,8 кГц. Такие файлы пока не продаются и доступны только в качестве демо, к звучанию которых, надо сказать, тоже сложно придраться, — определенно высшая проба аудио. 10 мин записи в DXD с параметрами 24 бит/352,8 кГц занимают около 1,5 Гб, зато с таким РСМ гораздо легче работать в студии. Таким образом многие современные SACD-издания были исполнены на рабочих станциях Pyramix, оснащенных всем инструментарием для DXD-записи. Не без гордости указывают DXD в качестве исходника и на аудиофильских Blu-ray Audio.

Что касается интернет-продаж, то очевидно, что для хранения и скачивания габариты DXD-файлов довольно велики, их нужно во что-то переконвертировать, хотя бы и в DSD-файлы, которые занимают места сопоставимо с LPCM в 24/96, и по ряду причин могут звучать более интересно. Хотя, безусловно, найдутся люди (и я в их числе), которые предпочтут избыточное качество всему остальному, тем более сейчас, когда основная масса бывших владельцев компакт-дисков благополучно перешла на MP3 и интернет-радио и требовать большего остались только самые хардкорные граждане. Ну что ж. Время покажет, каким будет типичный хайрез через 5 лет и будет ли это FLAC 24/96.

ГДЕ МОЖНО СКАЧАТЬ МУЗЫКУ В DSD
www.dsd-guide.com;
Channel Classic Records

(channelclassics.com);
2L Records
(2l.no/hires/index.html);
Blue Coast Records
(bluecoastrecords.com)

ГДЕ МОЖНО ПОСМОТРЕТЬ BLU-RAY AUDIO-ИЗДАНИЯ
pureaudio-bluray.com;
Naxos Records (naxos.com);
EuroArts (euroarts.com)

 

  DVD DVD-Audio SACD HD-DVD Blu-ray
Максимальная разрядность удиодорожки 24 бит/ 96 кГц 24 бит/ 192 кГц 1 бит/ 2,8224 МГц 24 бит/ 192 кГц 24 бит/ 192 кГц
Допусти мое количество каналов на максимальном битрейте 2 2 5.1 2 5.1
Примечания DVD-издания с такими параметрами практически не встречаются. Болыиинство музыкальных стереодорожек на DVD закодировано в LPCM с дискретностью 48 кГц Также распространена многоканальная конфигурация 5.1 с разрядностью 24 бит/96 кГц. В настоящее время выпуск новых релизов практически прекращен Применяется способ, отличный от РСМ-кодирования, — DSD. Возможна конфигурация 5.1 с разрядностью 24 бит/96 кГц. В настоящее время выпуск новых релизов прекращен Стандарт Profile 3.0 специально предназначен для аудиовоспроизведения. Как правило, на диске в 24/192 находятся несжатая стереодорожка LPCM и lossless DTS-HD Master Audio 5.1

По материалам издания STEREO & VIDEO
Автор Ярослав Годына

Ниже приведены спектрограммы DSD64 и DSD128, чёрным цветом обозначен фильтруемый ВЧ шум, исходным сигналом была запись Nidarosdomens jentekor & TrondheimSolistene — Arnesen: MAGNIFICAT 4.

Импульсно-кодовая модуляция

Et misericordia

Как можно видеть данный фильтр фильтрует только шум и не затрагивает полезный сигнал при любом(DSD64,DSD128,DSD256,DSD512) DSD потоке. Так как фильтруется практически весь шум DSD поток можно преобразовать в PCM не только в 352,8/176,4/88,2кГц но и в 44,1кГц если это требуется.

Сейчас много студий, лейблов итд предлагают музыкальный материал в нескольких вариантах на выбор (как 24/96, 24/192, DSD64, DSD128), если исходный материал был записан в DSD или DXD то этот фильтр даст лучшее качество чем PCM поток созданный из этого материала из за того что на студии в большинстве случаев преобразуют DSD(DXD)-PCM «по привычке» brickwall фильтрами тем самым получая максимальную полосу и плохую импульсную характеристику + артефакты от ASRC (при конверсии в 96/192кГц).

Скачать данный фильтр можно по ссылке S-Audio.Systems DSD filter

Для использования данного фильтра в foobar2000 или Aplayer надо распаковать содержимое архива в какую нибудь папку, в плеере выбрать SACD плагин в котором выбрать Installable FIR и загрузить данный фильтр с папки в которую был распакован архив. Скриншоты с foobar2000 и Aplayer представлены ниже:


Также был разработан оптимизированный фильтр позволяющий получить еще лучшее звучание ценой универсальности, его возможно использовать исключительно при выводе в 352,8/176,4кГц. Скачать данный фильтр можно по ссылке S-Audio.Systems DSD short MP filter

«Прямо или косвенно, но все вопросы, связанные со звуком, должны решаться ухом как органом слуха: оспаривать заключения, которые даются ухом уже не приходится» лорд Рэлей (Дж. У. Стретт)

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *